30 September 2015

UVA 1629 [动态规划]

Problem Description
A rectangular cake with a grid of m*n unit squares on its top needs to be sliced into pieces. Several cherries are scattered on the top of the cake with at most one cherry on a unit square. The slicing should follow the rules below:
1. each piece is rectangular or square;
2. each cutting edge is straight and along a grid line;
3. each piece has only one cherry on it;
4. each cut must split the cake you currently cut two separate parts

For example, assume that the cake has a grid of 3*4 unit squares on its top, and there are three cherries on the top, as shown in the figure below.
uva_1629_1
One allowable slicing is as follows.
uva_1629_2
For this way of slicing , the total length of the cutting edges is 2+4=6. Another way of slicing is
uva_1629_3
In this case, the total length of the cutting edges is 3+2=5.

Give the shape of the cake and the scatter of the cherries , you are supposed to find
out the least total length of the cutting edges.

Input
The input file contains multiple test cases. For each test case:
The first line contains three integers , n, m and k (1≤n, m≤20), where n*m is the size of the unit square with a cherry on it . The two integers show respectively the row number and the column number of the unit square in the grid .
All integers in each line should be separated by blanks.

Output
Output an integer indicating the least total length of the cutting edges.

Sample Input
3 4 3 1 2 2 3 3 2

Sample Output
Case 1: 5

解析

乍一看就明白这题该用动规,整个求解的过程也相对容易,这里只简单论述解体方法:

对整个图求最优解即为对对所有切割一次后得到的两部分求解,并取其代价的最小值,即
1. 遍历所有将图M分割成两部分的情况(共n种),记每种分割情况下,分割后的两个子图求最优代价[步骤2]为Ak,Bk(k取1到n),记这种情况下总分割代价为Ck=Ak+Bk+W(k取1到n,W为本次分割的代价),对数组Ck求最小值,即为最优解
2. 对分割后的图A,B使用1所描述的方法,求得其最优解

示例代码 (没有去OJ测试[笑],仅供参考)

#include <iostream>
#include <memory.h>
#include <memory>

using namespace std;

int cake[21][21];
int m,n,k;

int min_cutting_edges(int x,int y,int w,int h){
	int c = 0;      // Number of current squares's cherries
	int x_c[w];     // Number of column x+w's cherries
	int y_c[h];     // Number of row y+h's cherries
	for(int i=0;i<w;i++)
		x_c[i] = 0;
	for(int i=0;i<h;i++)
		y_c[i] = 0;
	for(int i=x;i<x+w;i++){
		for(int t=y;t<y+h;t++){
			if(cake[i][t]){
				++c;		// 	总樱桃个数
				++x_c[i-x]; // 	这一列存在的樱桃个数
				++y_c[t-y];	//	这一行存在的樱桃个数
			}
		}
	}

	if (c <= 1)		//	只存在一个或者不存在樱桃时不进行分割(代价为0)
		return 0;

	int c1 = 0;
	int min_solution = 1000;
	int current_solution = 1000;
	for(int i=0;i<w;i++){		// 遍历所有可能的纵向切割
		current_solution = 1000;
		c1 += x_c[i];
		if(c1 == c)				// 当右侧不再存在樱桃时
			break;
		if(c1 > 0){
			current_solution = h;									//	本次分割代价
			current_solution += min_cutting_edges(x+i+1,y,w-i-1,h);	// 右子图求最优解
			current_solution += min_cutting_edges(x,y,i+1,h);		// 左子图求最优解
			if(current_solution < min_solution)
				min_solution = current_solution;
		}
	}
	c1 = 0;
	for(int i=0;i<h;i++){		// 遍历所有可能的横向切割
		current_solution = 1000;
		c1 += y_c[i];
		if(c1 == c)				//	当下侧不再存在樱桃时
			break;
		if(c1 > 0){				
			current_solution = w;									// 本次分割代价
			current_solution += min_cutting_edges(x,y,w,i+1);		//	上子图求最优解
			current_solution += min_cutting_edges(x,y+i+1,w,h-i-1);	//	下子图求最优解
			if(current_solution < min_solution)
				min_solution = current_solution;
		}
	}
	return min_solution;
}

int main(){
	for(int i=0;i<21;i++)
		for(int t=0;t<21;t++)
			cake[i][t] = 0;
	int x,y;
	int c = 0;
	while(scanf("%d %d %d",&n,&m,&k)!=EOF){
		for(int i=0;i<k;i++){
			scanf("%d %d",&y,&x);
			cake[x][y] = 1;
		}
		++c;
		cout << "Case "<< c << ": " << min_cutting_edges(1,1,n,m) << endl;
	}
	return 0;
}